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Abstract

Distributed storage systems provide reliable access ttadugh redundancy spread over individually unreliable
nodes. Application scenarios include data centers, mepe¢r storage systems, and storage in wireless networks.
Storing data using an erasure code, in fragments spreasisagooles, requires less redundancy than simple replication
for the same level of reliability. However, since fragmemtgst be periodically replaced as nodes fail, a key question
is how to generate encoded fragments in a distributed wayewhansferring as little data as possible across the
network.

For an erasure coded system, a common practice to repair draode failure is for a new node to download
subsets of data stored at a number of surviving nodes, reaohs lost coded block using the downloaded data,
and store it at the new node. We show that this procedure iopgtimal. We introduce the notion of regenerating
codes, which allow a new node to downlothctionsof the stored data from the surviving nodes. We show that
regenerating codes can significantly reduce the repaintidiinl Further, we show that there is a fundamental tradeoff
between storage and repair bandwidth which we theoretichlhracterize using flow arguments on an appropriately
constructed graph. By invoking constructive results inmoek coding, we introduce regenerating codes that can
achieve any point in this optimal tradeoff.

I. INTRODUCTION

The purpose of distributed storage systems is to store dhdoly over long periods of time using a distributed
collection of storage nodes which may be individually uiatde. Applications involve storage in large data centers
and peer-to-peer storage systems such as OceanStore ti]RBzall [4], and DHash++ [5], that use nodes across
the Internet for distributed file storage. In wireless semmiworks, obtaining reliable storage over unreliableaaot
might be desirable for robust data recovery [6], especiallgatastrophic scenarios [7].

In all these scenarios, ensuring reliability requires tiieoduction of redundancy. The simplest form of redundancy

is replication, which is adopted in many practical storagtems. As a generalization of replication, erasure coding
Results in this paper have appeared in part in [1] and [2].
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Fig. 1. The repair problem: Assume that a (4,2) MDS erasud® dée used to generate 4 fragments (stored in nades. . z*) with the
property that any2 can be used to reconstruct the original datay?. When nodez* fails, and a newcomer® needs to generate an erasure
fragment fromz!, ... 23, what is the minimum amount of information that needs to bamanicated?
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Fig. 2. Example: A repair for a (4,2)-Minimum-Storage Regrting Code. All the packets (boxes) in this figure have 8izd1b and each
node stores two packets. Note that any two nodes have fowatiegs that can be used to recover the data,az, b1, b2. The parity packets
p1,p2,p3 are used to create the two packets of the newcomer, requijpajr bandwidth ofi.5MB. The multiplying coefficients are selected
at random and the example is shown over the integers for wityp{although any sufficiently large field would be enougiihe key point is
that nodes do not send their information but generate snadidty packets of their data and forward them to the newcont® further mixes
them to generate two new packets. Note that the selecteflobemts also need to be included in the packets, which inited some overhead.

offers better storage efficiency. For instance, we can digidile of sizeM into k pieces, each of siz&1/k, encode
them inton coded pieces using am, k) maximum distance separable (MDS) code, and store themraides.
Then, the original file can be recovered from any set afoded pieces. This performance is optimal in terms of
the redundancy-reliability tradeoff becausgieces, each of siz&1/k, provide the minimum data for recovering
the file, which is of sizeM. Several designs [8], [4], [5] use erasure codes insteaceplication. For certain

cases, erasure coding can achieve orders of magnituder higtadility for the same redundancy factor compared
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to replication; see, e.g., [9].

However, a complication arises: In distributed storageesys, redundancy must be continually refreshed as nodes
fail or leave the system, which involves large data trassémross the network. This problem is best illustrated in
the simple example of Fig. 1: a data object is divided in twagmentsy®, 3% (say, each of sizéMb) and these
encoded into four fragments', ...z* of same size, with the property that any two out of the four banused
to recover the original', 2. Now assume that storage noge fails and a new node®, the newcomer, needs to
communicate with existing nodes and create a new encodd@tatich that any two out af', 22, 23, 2° suffice
to recover. Clearly, if the newcomer can download any twooded fragments (say from!, z2), reconstruction
of the whole data object is possible and then a new encodgthéat can be generated (for example by making a
new linear combination that is independent from the exgstines). This, however, requires the communication of
2Mb in the network to generate an erasure encoded fragmeizeib at z°. In general, if an object of siza
is divided in & initial fragments, the repair bandwidth with this stratégyM bits to generate a fragment of size
M/k. In contrast, if replication is used instead, a new repliay simply be copied from any other existing node,
incurring no bandwidth overhead. It was commonly believeat thisk-factor overhead in repair bandwidth is an
unavoidable overhead that comes with the benefits of codiag, (for example, [10]). Indeed, all known coding
constructions require access to the original data objegetwerate encoded fragments.

In this paper we show that, surprisingly, there exist emfdes that can be repaired without communicating
the whole data object. In particular, for tfié, 2) example, we show that the newcomer can downlb&d/b to
repair a failure and that this is the information theoretimimum (see Fig. 2 for an example). More generally,
we identify a tradeoff between storage and repair bandvadth show that codes exist that achieve every point on
this optimal tradeoff curve. We call codes that lie on thisimpl tradeoff curveregenerating codedNote that the
tradeoff region computed corrects an error in the threshpldomputed in [1] and generalizes the result to every
feasible(«, ) pair.

The two extremal points on the tradeoff curve are of speai@rest and we refer to them as minimum-storage
regenerating (MSR) codes and minimum-bandwidth regeingré1BR) codes. The former correspond to Maximum
Distance Separable (MDS) codes that can also be efficiesplgired. At the other end of the tradeoff are the MBR
codes, which have minimum repair bandwidth. We show thaadhestorage node is allowed to store slightly more
than M /k bits, the repair bandwidth can be significantly reduced.

The remainder of this paper is organized as follows. In $acki we discuss relevant background and related
work from network coding theory and distributed storagetesys. In Section Il we introduce the notion of the
information flow graph, which represents how informatiorc@nmunicated and stored in the network as nodes
join and leave the system. In Section 1lI-B we characterime hinimum storage and repair bandwidth and show
that there is a tradeoff between these two quantities thatbeaexpressed in terms of a maximum flow on this
graph. We further show that for any finite information flow ginathere exists a regenerating code that can achieve
any point on the minimum storage/ bandwidth feasible regiencomputed. Finally, in Section IV we evaluate the

performance of the proposed regenerating codes usingstaddailures in real systems and compare to alternative
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schemes previously proposed in the distributed storageatiire.

Il. BACKGROUND AND RELATED WORK
A. Erasure codes

Classical coding theory focuses on the tradeoff betweaimm@ahcy and error tolerance. In terms of the redundancy-
reliability tradeoff, the Maximum Distance Separable (M@8des are optimal. The most well-known class of MDS
erasure codes is the Reed-Solomon code. More recent sard@ssure coding focus on other performance metrics.
For instance, sparse graph codes [11], [12], [13] can aehie@ar-optimal performance in terms of the redundancy-
reliability tradeoff and also require low encoding and déing complexity. Another line of research for erasure
coding in storage applications is parity array codes; sag, f4], [15], [16], [17]. The array codes are based
solely on XOR operations and they are generally designet thi¢ objective of low encoding, decoding, and
update complexities. Plank [18] gave a tutorial on erasodes for storage applications at USENIX FAST 2005,
which covers Reed-Solomon codes, parity-array codes, &IC codes.

Compared to these studies, this paper focuses on diffeegfarmance metrics. Specifically, motivated by practical
concerns in large distributed storage systems, we explasuee codes that offer good tradeoffs in terms of

redundancy, reliability, and repair bandwidth tradeoff.

B. Network Coding

Network coding is a generalization of the conventional iryt(store-and-forwarding) method. In conventional
routing, each intermediate node in the network simply stared forwards information received. In contrast, network
coding allows the intermediate nodes to generate output latencoding (i.e., computing certain functions of)
previously received input data. Thus, network coding aflanformation to be “mixed” at intermediate nodes.
The potential advantages of network coding over routinduthe resource (e.g., bandwidth and power) efficiency,
computational efficiency, and robustness to network dynanAs shown by the pioneering work of Ahlswede et
al. [19], network coding can increase the possible netwbriughput, and in the multicast case can achieve the
maximum data rate theoretically possible.

Subsequent work [20], [21] showed that the maximum multicapacity can be achieved by using linear encoding
functions at each node. The studies by &toal. [22] and Sanderst al. [23] further showed that random linear
network coding over a sufficiently large finite field can (apyatically) achieve the multicast capacity. A polynomial
complexity procedure to construct deterministic netwarkes that achieve the multicast capacity is given by Jaggi
et al. [24].

For distributed storage, the idea of using network coding wdroduced in [6] for wireless sensor networks.
Many aspects of coding for storage were further explored[Pd], [26] for sensor network applications. Network
coding was proposed for peer-to-peer content distribigimtems [27] where random linear operations over packets

are performed to improve file downloading in large unstreexduoverlay networks.
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The key difference of this paper to this existing literatisr¢hat we bring the dimension oépair bandwidthinto
the picture, and present fundamental bounds and constngctor network codes that need to be maintained over
time. Similar to this related work, intermediate nodes fdimear combinations in a finite field and the combination
coefficients are also stored in each packet, creating soraghead that can be made arbitrarily small for larger
packet sizes. In regenerating codes, repair bandwidttdiscerl because many nodes create small parity packets of
their data that essentially contain enough novel inforamato generate a new encoded fragment, without requiring

to reconstruct the whole data object.

C. Distributed storage systems

A number of recent studies [28], [8], [29], [30], [4], [31] Y& designed and evaluated large-scale, peer-to-peer
distributed storage systems. Redundancy managemermgtsfor such systems have been evaluated in [9], [32],
[4], [10], [31], [33], [34], [35].

Among these, [9], [4], [10] compared replication with enasgodes in the bandwidth-reliability tradeoff space.
The analysis of Weatherspoon and Kubiatowicz [9] showet ¢énasure codes could reduce bandwidth use by an
order of magnitude compared with replication. Bhagwan ef4dlcame to a similar conclusion in a simulation of
the Total Recall storage system.

Rodrigues and Liskov [10] propose a solution to the repaibfam that we call thélybrid strategy one special
storage node maintains one full replica in addition to npléterasure-coded fragments. The node storing the replica
can produce new fragments and send them to newcomers, #nsfeiring justM /k bytes for a new fragment.
However, maintaining an extra replica on one node diluted#mdwidth-efficiency of erasure codes and complicates
system design. For example, if the replica is lost, new fragts cannot be created until it is restored. The authors
show that in high-churn environments (i.e., high rate of engmins/leaves), erasure codes provide a large storage
benefits but the bandwidth cost is too high to be practicalafét2P distributed storage system, using the Hybrid
strategy. In low-churn environments, the reduction in lveidth is negligible. In moderate-churn environments, ¢her
is some benefit, but this may be outweighed by the added acothitl complexity that erasure codes introduce as
discussed further in Section IV-E. These conclusions waeet on an analytical model augmented with parameters
estimated from traces of real systems. Compared with [9], ied a much smaller value bf(7 instead of32) and
the Hybrid strategy to address the code regeneration probfeSection IV, we follow the evaluation methodology

of [10] to measure the performance of the two redundancy tea@mce schemes that we introduce.

IIl. ANALYSIS

Our analysis is based on a particular graphical representaf a distributed storage system, which we refer
to as aninformation flow graphg. This graph describes how the information of the data oligecommunicated

through the network, stored in nodes with limited memory e@aches reconstruction points at the data collectors.
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Fig. 3. lllustration of the information flow grap@ corresponding to the (4,2) code of figure 1. A distributedaje scheme uses &, 2)
erasure code in which ar®y fragments suffice to recover the original data. If nadebecomes unavailable and a new node joins the system,
we need to construct new encoded fragment:#n To do so, noder? is connected to thel = 3 active storage nodes. Assumiriybits

mn

communicated from each active storage node, of interesteisrtinimum3 required. The min-cut separating the source and the dalectml
must be larger tharm = 2Mb for reconstruction to be possible. For this graph, the-mitivalue is given byl + 23, implying thatg > 0.5Mb
is sufficient and necessary.

A. Information Flow Graph

The information flow graph is a directed acyclic graph cairgisof three kinds of nodes: a single data sousce
storage nodes!, ,x¢ ., and data collector®C;. The single nodé& corresponds to the source of the original data.
Storage node in the system is represented by a storage input nggeand a storage output nodg,,; these two
nodes are connected by a directed edge— x? , with capacity equal to the amount of data stored at no®&ee
Figure 3 for an illustration.

Given the dynamic nature of the storage systems that we aemghe information flow graph also evolves in
time. At any given time, each vertex in the graph is eithetive or inactive depending on whether it is available
in the network. At the initial time, only the source noflés active; it then contacts an initial set of storage nodes,
and connects to their inputs;f,) with directed edges of infinite capacity. From this poinwwands, the original
source nodé& becomes and remains inactive. At the next time step, thiallgichosen storage nodes become now
active; they represent a distributed erasure code, cameksipg to the desired steady state of the system. If a new
nodej joins the system, it can only be connected with active notddbe newcomer; chooses to connect with
active storage nodg then we add a directed edge frody,, to xfn with capacity equal to the amount of data that
the newcomer downloads from nodeNote that in general it is possible for nodes to downloadearaata than
they store, as in the example of tfw 2)-erasure code. If a node leaves the system, it becomesvieaEtnally, a
data collectoDC is a node that corresponds to a request to reconstruct the@ata collectors connect to subsets
of active nodes through edges with infinite capacity.

An important notion associated with the information flow mhrds that of minimum cuts: A cut in the gragh
between the sourcg and a fixed data collector nod®C is a subset” of edges such that, there is no path starting

from S to DC that does not have one or more edges§’inThe minimum cut is the cut betweé&nandDC in which
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the total sum of the edge capactities is smallest.

B. Storage-Bandwidth Tradeoff

We are now ready for the main result of this paper, the chariaetion of the feasible storage-repair bandwidth
points. The setup is as follows: The normal redundancy wet Wamaintain requires. active storage nodes, each
storing o bits. Whenever a node fails, a newcomer downloddsits each from anyl surviving nodes. Therefore
the total repair bandwidth is = dg (see figure 3). We restrict our attention to the symmetriasethere it is
required that anyc storage nodes can recover the original file, and a newcomenldads the same amount of
information from each of the existing nodes.

For each set of parameteps, k, d, «, v), there is a family of information flow graphs, each of whichiresponds
to a particular evolution of node failures/repairs. We derthis family of directed acyclic graphs l6)(n, k, d, «, ).

An (n, k,d, o, ) tuple will be feasible, if a code with storageand repair bandwidtl exists. For the example in
figure 3, the point4, 2,3, 1Mb, 1.5Mb) is feasible (and a code that achieves it is shown in figure @)adso on
the optimal tradeoff whereas a standard erasure code whitimenicates the whole data object would correspond
to v = 2Mb instead. Note that, k, d must be integers while, 3,~ are real valued.

Theorem 1:For any« > «o*(d,), the points(n, k,d, «,~) are feasible, and linear network codes suffice to
achieve them. It is information theoretically impossilideathieve points witlv < «*(d, v). The threshold function

a*(d,~) (which also depends on, k) is the following:

2, € [£(0), +00)
atdy)=4 k7 W
Mool e [£(i), f(i - 1)),
where
oA 2Md
7= (2k —i—1)i+2k(d—k +1)’ 2)
i) 2 (2d—2k2c—i|—z+1)z. o
The minimumy is
2Md
'Ymin:f(k—l): m (4)

The complete proof of this theorem is given in the Appendike Tnain idea is that the code repair problem
can be mapped to a multicasting problem on the information ficaph. Known results on network coding for
multicasting can then be used to establish that code regaibe achieved if and only if the underlying information
flow graph has enough connectivity. The bulk of the technésalysis of the proof then involves computing the
minimum cuts on arbitrary graphs §(n, k, d, «,y) and solving an optimization problem for minimizimgsubject
to a sufficient flow constraint.

The optimal tradeoff curves fot = 5,n = 10,d = 9 andk = 10,n = 15,d = 14 are shown in Figure 4 (top)

and (bottom), respectively.
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Optimal tradeoff for k=5, n=10
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Fig. 4. Optimal tradeoff curve between storageand repair bandwidthy, for k = 5,n = 10 (left) and k = 10, n = 15 (right). For both
plots M =1 andd = n — 1. Note that traditional erasure coding corresponds to thetp¢y = 1, = 0.2) and (y = 1, = 0.1) for the
top and bottom plots.
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C. Special Cases: Minimum-Storage Regenerating (MSR) £add Minimum-Bandwidth Regenerating (MBR)
Codes

We now study two extremal points on the optimal tradeoff euwhich correspond to the best storage efficiency
and the minimum repair bandwidth, respectively. We callesotthat attain these points minimum-storage regenerating
(MSR) codes and minimum-bandwidth regenerating (MBR) spdespectively.

It can be verified that the minimum storage point is achiewedhie pair
M Md )

k7 k(d—k+1) ©®)

(aMsR, YMSR) = <

If we substituted = k into the above, we note that the total network bandwidth &wair is M, the size of the
original file. Therefore, if we only allow a newcomer to cactté nodes, it is optimal to download the whole file
and then compute the new fragment. However, if we allow a never to contact more thaih nodes, the network
bandwidthya;sr can be reduced significantly. The minimum network bandwislttiearly achieved by having the
newcomer contact all other nodes. For instance,(fok) = (14, 7), the newcomer needs to download orﬁ@
from each of thed = n — 1 = 13 active storage nodes, making the repair bandwidth equé%@, required to
generate a fragment of siz&

Since the MSR codes stm@ bits at each node while ensuring ahycoded blocks can be used to recover the
original file, the MSR codes have equivalent reliabilitglnadancy performance with standard Maximum Distance
Separable (MDS) codes. However, MSR codes outperformicdds8IDS codes in terms of the network repair
bandwidth.

At the other end of the tradeoff are MBR codes, which have mimh repair bandwidth. It can be verified that
the minimum repair bandwidth point is achieved by

2Md 2Md
2kd — k2 + k7 2kd—Ek2+k )

(6)

(aMBRa 'YMBR) = (

Note that the minimum bandwidth regenerating codes, thegtosizea is equal toy, the total number of bits
downloaded. Therefore MBR codes incur no bandwidth exjoardi all, just like a replication system does. However,

the benefit of MBR codes is significantly better storage efficy.

IV. EVALUATION

In this section, we compare regenerating codes with othdun@ancy management schemes in the context of
distributed storage systems. We follow the evaluation wadtogy of [10], which consists of a simple analytical
model whose parameters are obtained from traces of nodlailisy measured in several real distributed systems.

We begin in Section IV-A with a discussion of node dynamicd #me objectives relevant to distributed storage
systems, namely reliability, bandwidth, and disk space. il¢eoduce the model in Section IV-B and estimate
realistic values for its parameters in Section IV-C. Setlié-D contains the quantitative results of our evaluation.
In Section IV-E, we discuss qualitative tradeoffs betweegenerating codes and other strategies, and how our

results change the conclusion of [10] that erasure codesdadimited practical benefit.
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A. Node dynamics and objectives

In this section we introduce some background and terminolagich is common to most of the work discussed
in Section II-C.

We draw a distinction betwegrermanentandtransientnode failures. A permanent failure, such as the permanent
departure of a node from the system or a disk failure, resualtsss of the data stored on the node. In contrast,
data is preserved across a transient failure, such as atrebdemporary network disconnection. We say that a
node isavailablewhen its data can be retrieved across the network.

Distributed storage systems attempt to provide two typesebébility: availability and durability. A file is
available when it can be reconstructed from the data stored on cuyrentilable nodes. A file'dlurability is
maintained if it has not been lost due to permanent noderésiuhat is, it may be available at some point in the
future. Both properties are desirable, but in this paper eyt results for availability only. Specifically, we will

showfile unavailability, the fraction of time that the file is not available.

B. Model

We use a model which is intended to capture the average-eambMdth used to maintain a file in the system,
and the resulting average availability of the file. With mimxceptionsthis model and the subsequent estimation
of its parameters are equivalent to that of [10]. Althougis #valuation methodology is a significant simplification
of real storage systems, it allows us to compare directly wie conclusions of [10] as well as to calculate precise
values for rare events.

The model has two key parameteis,and a. First, we assume that in expectation a fractiprof the nodes
storing file data fail permanently per unit time, causingadéinsfers to repair the lost redundancy. Second, we
assume that at any given time while a node is storing datandde is available with some probability(and with
probability 1 — a is currently experiencing a transient failure). Moreoibe model assumes that the event that a
node is available is independent of the availability of diey nodes.

Under these assumptions, we can compute the expectedbéltgiland maintenance bandwidth of various
redundancy schemes to maintain a file of bytes. We make use of the fact that for all schemes except MSR
codes, the amount of bandwidth used is equal to the amourdgdafndancy that had to be replaced, which is in
expectationf times the amount of storage used.

Replication: If we storeR replicas of the file, then we store a total & - M bytes, and in expectation we
must replacef - R - M bytes per unit time. The file is unavailable if no replica isitable, which happens with
probability (1 — a)*.

Ideal Erasure Codes: For comparison, we show the bandwidth and availability ofypdthetical(n, k) erasure

code strategy which can “magically” create a new packeteviriinsferring justM /k bytes (.e. the size of the

1in addition to evaluating a larger set of strategies andguaisomewhat different set of traces, we count bandwidth dwstto permanent
node failure only, rather than both failures and joins. Mdssigns [4], [31], [33] can avoid reacting to node joins. Aiddally, we compute

probabilities directly rather than using approximationsthie binomial.
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Trace Length Start Mean # f a
(days) date nodes up | (fraction failed per day)
PlanetLab 527 Jan. 2004 303 0.017 0.97
Microsoft PCs 35 Jul. 6, 1999 41970 0.038 0.91
Skype 25 Sept. 12, 2005 710 0.12 0.65
Gnutella 2.5 May, 2001 1846 0.30 0.38
TABLE |

THE AVAILABILITY TRACES USED IN THIS PAPER.

packet). Setting: = k - R, this strategy sendg - R - M bytes per unit time and has unavailability probability

okl [T i n—i
Uideal(n, k) := Zi:() . a'(l—a)"".
i

Hybrid: If we store one full replica plus atw, k) erasure code where = k - (R — 1), then we again store
R - M bytes in total, so we transfef - R - M bytes per unit time in expectation. The file is unavailable if
the replica is unavailabland fewer thank erasure-coded packets are available, which happens withapility
(1 —a) - Uigealn, k).

Minimum-Storage Regenerating Codes: An (n, k) MSR Code with redundancR = n/k storesSRM bytes
in total, sof - R - M bytes must be replaced per unit time. We will refer to tverheadof an MSR cod& sk

as the extra amount of information that needs to be trar$fevenpared to the fragment sizef /k:

a(n—=1)Busr _n—1
OMSR = Mk n—k (7

Therefore, replacing a fragment requires transferring tlve networkdysg times the size of the fragment in the
most favorable case when newcomers connect to n — 1 nodes to construct a new fragment. Therefore, this
results inf - R - M - dmsr bytes sent per unit time, and unavailabilitgeal(n, k).

Minimum-Bandwidth Regenerating Codes:

It is convenient to define the MBR code overhead as the amduntasmation transfered over the ideal fragment

size:
6 é (TL— 1)51\43}3 o 2(TL— 1)
MBE= "Mk 2n—k—1

Therefore, ann, k) MBR Code storesM - n - duygr bytes in total. So in expectatiofi- M - n - dygr bytes are

(8)

transfered per unit time, and the unavailability is ag&iga(n, k).

C. Estimatingf anda

In this section we describe how we estimgtethe fraction of nodes that permanently fail per unit timed a,
the mean node availability, based on traces of node avtijalni several distributed systems.
We use four traces of node availability with widely varyinigacacteristics, summarized in Table |. TREn-

etLab All Pairs Ping [36] trace is based on pings sent evéfy minutes between all pairs @00-400 nodes in
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PlanetLab, a stable, managed network research testbedosler a node to be up in oié-minute interval when

at least half of the pings sent to it in that interval succéledie a number of periods, all or nearly all PlanetLab
nodes were down, most likely due to planned system upgradegasurement errors. To exclude these cases, we
“cleaned” the trace as follows: for each period of downtinie garticular node, we remove that period (i.e. we
consider the node up during that interval) when the averageber of nodes up during that period is less than
half the average number of nodes up over all time. Wherosoft PCs [28] trace is derived from hourly pings to
desktop PCs within Microsoft Corporation. TIs&ype superpeers [37] trace is based on application-level pings
at 30-minute intervals to nodes in the Skype superpeer mifwdhich may approximate the behavior of a set of
well-provisioned endhosts, since superpeers may be sdléttpart based on bandwidth availability [37]. Finally,
the trace ofGnutella peers[38] is based on application-level pings to ordinary Gnutellarpat 7-minute intervals.

We next describe how we derivg and a from these traces. It is of key importance for the storageesys
to distinguish between permanent and transient failurefin@d in Section IV-A), since only the former requires
bandwidth-intensive replacement of lost redundancy. Mystems use &imeoutheuristic: when a node has not
responded to network-level probes after some period of time is considered to have failed permanently. To
approximate a storage system’s behavior, we use the samisttielNode availabilitya is then calculated as the
mean (over time) fraction of nodes which were available agntirose which were not considered permanently
failed at that time.

The resulting values of anda appear in Table I, where we have fixed the timeoat 1 day. Longer timeouts
reduce overall bandwidth costs [10], [33], but begin to ictiurability [33] and are more likely to produce artificial
effects in the short2(5-day) Gnutella trace.

We emphasize that the procedure described above only m®wad estimate of and a which may be biased
in several ways. Some designs [33] reincorporate data oeshadhich return after transient failures which were
longer than the timeout which would reducef. Additionally, even placing files on uniform-random nodesuits
in selecting nodes that are more available [34] and lesseptorfailure [35] than the average node. Finally, we
have not accounted for the time needed to transfer data omtmda, during which it is effectively unavailable.
However, we consider it unlikely that these biases wouldaotur main results since we are primarily concerned

with the relative performance of the strategies we compare.

D. Quantitative results

Figure 5 shows the tradeoff between mean unavailabilityraedn maintenance bandwidth in each of the strategies
of Section IV-B using the values of anda from Section IV-C andk = 7. Feasible points in the tradeoff space
are produced by varying the redundancy fackrThe marked points along each curve highlight a subset of the
feasible points (i.e., points for which is integral).

Figure 6 shows that relative performance of the variougegjras is similar fork = 14.

For conciseness, we omit plots of storage used by the schétoesver, disk usage is proportional to bandwidth

for all schemes we evaluate in this section, with the exoeptif minimum storage regenerating codes. This is
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Fig. 5. Availability-bandwidth tradeoff fok = 7 with parameters derived from each of the traces. The key)imafgglies to all four plots.

because MSR codes are the only scheme in which the datagrssgsbnto a newcomer is not equal to the amount
of data that the newcomer finally stores. Instead, the stotmgd by MSR codes is equal to that of the storage
used by hypothetical ideal erasure codes, and hence MSR'caubece usage is proportional to the bandwidth used
by ideal codes.

For example, from Figure 5(b) we can compare the stratedi¢sesr feasible points closest to unavailability
0.0001, i.e., four nines of availability. At these points, MSR cedese abouti4% more bandwidth an@d8% less
storage space than Hybrid, while MBR codes use al3otf# less bandwidth and storage space than Hybrid.
Additionally, these feasible points give MSR and MBR codesiewhat better unavailability than Hybrid)(0059
vs. 0.00018).

One interesting effect apparent in the plots is that MSR soghaintenance bandwidth actualiiecreasess the
redundancy factoR increases, before coming to a minimum and then increasiam altuitively, while increasing
‘R increases the total amount of data that needs to be maididimresmall R this is more than compensated for
by the reduction in overhead. The expected maintenancenwbdiidper unit time is

nn—1

kn—Fk

fMRbusr = f M )
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Fig. 6. Availability-bandwidth tradeoff fok = 14 with parameters derived from each of the traces.

It is easy to see that this function is minimized by selectingne of the two integers closest to

Nopt = k + V2 — k. (10)

which approaches a redundancy factoras k& — oc.

E. Qualitative comparison

In this section we discuss two questions: First, based orethdts of the previous section, what are the qualitative
advantages and disadvantages of the two extremal regegecades compared with the Hybrid coding scheme?
Second, do our results affect the conclusion of Rodrigueasb laskov [10] that erasure codes offer too little
improvement in bandwidth use to clearly offset the addedperity that they add to the system?

1) Comparison with Hybrid:Compared with Hybrid, for a given target availability, mimim storage regenerating
codes offer slightly lower maintenance bandwidth and gferand a simpler system architecture since only one
type of redundancy needs to be maintained. An importanttipedaisadvantage of using the Hybrid scheme is

asymmetric design which can cause the disk I/O to become dtteiheck of the system during repairs. This is
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because the disc storing the full replica and generatesribeded fragments need to read the whole data object
and compute the encoded fragment.

However, MBR codes have at least two disadvantages. Finsstcting a new packet, or reconstructing the entire
file, requires communcation with— 1 node$ rather than one (in Hybrid, the node holding the single og)liThis
adds overhead that could be significant for sufficiently $files or sufficiently largen. Perhaps more importantly,
there is a factobygr increase in total data transferredread the file, roughly30% for a redundancy factdR = 2
andk = 7 or 13% for R = 4, Thus, if the frequency that a file is read is sufficiently hagid% is sufficiently small,
this inefficiency could become unacceptable. Again contpaiieh Hybrid, MSR codes offer a simpler, symmetric
system design and somewhat lower storage space for the sdiagility. However, MSR codes have somewhat
higher maintenance bandwidth and like MSB codes requirertéacomers and data collectors connect to multiple
nodes.

Rodrigues et al. [10] discussed two principal disadvargagke using erasure codes in a widely distributed
system: coding—in particular, the Hybrid strategy—cormmgies the system architecture; and the improvement in
maintenance bandwidth was minimal in more stable enviranispevhich are the more likely deployment scenario.

Regenerating codes address the first of these issues, whighmake coding more broadly applicable.

V. CONCLUSIONS

We presented a general theoretic framework that can deterthe information that must be communicated to
repair failures in encoded systems and identified a tradezifffleen storage and repair bandwidth.

Certainly there are many issues that remain to be addresfecelthese ideas can be implemented in practical
systems. In future work we plan to investigate determinidgsigns of regenerating codes over small finite fields,
the existence ofystematiaegenerating codes, designs that minimize the overheadgsetaf the coefficients, as
well as the impact of node dynamics in reliability. Othewiss of interest involve how CPU processing and disk I/O
will influence the system performance, as well as integnitgt aecurity for the linear combination packets (see [39]
for a related analysis for content distribution).

One potential application for the proposed regeneratirdesas distributed archival storage or backup, which
might be useful for data center applications. In this cases fire likely to be large and infrequently read, making
the drawbacks mentioned above less significant, so that M8 symmetric design may make them a win
over Hybrid; and the required reliability may also be highakimg them a win over simple replication. In other
applications (such as storage system within fast local owds) the required storage may become important, and

the results of the previous section show that minimum s®ragenerating codes can be useful.
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VI. APPENDIX

Here we prove Theorem 1. We first start with the following dienlemma.

Lemma 1:No data collectoiDC can reconstruct the initial data object if the minimum cug@irbetweenS and
DC is smaller than the initial object siz&1.

Proof: The information of the initial data object must be commutedafrom the source to the particular data
collector. Since every link in the information flow graph canly be used at most once, and since the point-to-
point capacity is less than the data object size, a standdrdet bound shows that the entropy of the data object
conditioned on everything observable to the data colleistaron-zero and therefore reconstruction is impossible.

[ ]

The information flow graph casts the original storage pnobés a network communication problem where the
sources multicasts the file to the set of all possible data collectBysanalyzing the connectivity in the information
flow graph, we obtain necessary conditions for all possibdeage codes, as shown in Lemma 1. In addition to
providing necessary conditions for all codes, the inforaraflow graph can also imply the existence of codes
under proper assumptions.

Proposition 1: Consider any given finite information flow gragh with a finite set of data collectors. If the
minimum of the min-cuts separating the source with each claltactor is larger or equal to the data object sizk
then there exists a linear network code defined over a suftlgi¢éarge finite fieldIF (whose size depends on the
graph size) such that all data collectors can recover tree aaject. Further, randomized network coding guarantees
that all collectors can recover the data object with proligitihat can be driven arbitrarily high by increasing the
field size.

Proof: The key point is observing that the reconstruction probleduces exactly to multicasting on all the
possible data collectors on the information flow graphrherefore, the result follows directly from the constivet
results in network coding theory for single source multices see the discussion of related works on network

coding in Section 1I-B. |
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To apply Proposition 1, consider an information flow graplthat enumerates all possible failure/repair patterns
and all possible data collectors when the number of failtepairs is bounded. This implies that there exists a
valid regenerating code achieving the necessary cut batfnldmma 1), which can tolerate a bounded number of
failures/repairs. In another paper [2], we present codiethmds that construct deterministic regenerating codss th
can tolerate infinite number of failures/repairs, with a haded field size, assuming only the population of active
nodes at any time is bounded. For the detailed coding thearetstruction, please refer to [2].

We analyze the connectivity in the information flow graph tadfthe minimum repair bandwidth. The next key
lemma characterizes the flow in any information flow graptdarmarbitrary failure pattern and connectivity.

Lemma 2:Consider any (potentially infinite) information flow grajgh formed by havingr initial nodes that
connect directly to the source and obtairbits, while additional nodes join the graph by connecting texisting
nodes and obtaining bits from eacl?. Any data collector that connects to a-subset of “out-nodes” (c.f. Figure 3)

of G must satisfy:
min{d,k}—1

mincut(s,t) > > min{(d —i)B,a}. (11)

=0
Furthermore, there exists an information flow graphe G(n, k, d, «, 3) where this bound is matched with equality.

Fig. 7. G* used in the proof of lemma 2

Proof: First, we show that there exists an information flow gréphwhere the bound (11) is matched with equality.
This graph is illustrated by Figure 7. In this graph, there gmitially » nodes labeled from 1 ta. Considerk
newcomers labeled as+ 1,...,n + k. The newcomer node + i connects to nodes +i —d,...,n +i — 1.
Consider a data collectdrthat connects to the lagt nodes, i.e., nodes + 1,...,n + k. Consider a cutU,U)
defined as follows. For eache {1,...,k}, if a < (d — )3, then we include ;" in U; otherwise, we include
xmhiandx2t in U. Then this cutU, U) achieves (11) with equality.

We now show that (11) must be satisfied for aflyformed by adding/ in-degree nodes as described above.

Consider a data collectdrthat connects to &-subset of “out-nodes”, safx’,, : i € I}. We want to show that

3Note that this setup allows more graphs than thosg(in, k, d, o, 3). In a graph inG(n, k,d, a, 3), at any time there are active storage
nodes and a newcomer can only connect to the active nodesntrast, in a graplz described in this lemma, there is no notion of “active

nodes” and a newcomer can connect to dngxisting nodes.
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any s—t cut in G has capacity at least
min{d,k}—1

> min{(d—i)B, a}. (12)

i=0

Since the incoming edges ofall have infinite capacity, we only need to examine the ¢tdJ) with s € U,
Xt €UV €L (13)

Let C denote the edges in the cut, i.e., the set of edges going ffamU.

Every directed acyclic graph has a topological sorting ,(geg., [40]), where a topological sorting (or acyclic
ordering) is an ordering of its vertices such that the eristeof an edge from; to v; impliesi < j. Letx!,,, be
the topologically first output node iff. Consider two cases:

« If x}, € U, then the edge’ x. . must be inC.

nout

. If x}, € U, sincex}, has an in-degree af and it is the topologically first node if¥, all the incoming edges
of x},, must be inC.
Therefore, these edges relatedxfg, will contribute a value ofmin{d3, o} to the cut capacity.

Now considerx?, ,, the topologically second output nodefh Similar to the above, we have two cases:

out’

. If x2, € U, then the edge? xZ,, must be inC.

mn’ou

« If x2. € U, since at most one of the incoming edgesxff can be fromx. ,, d — 1 incoming edges ok/,

outs
must be inC.
Following the same reasoning we find that for théh node { = 0, ..., min{d, k} — 1) in the sorted sel, either
one edge of capacity or (d — i) edges of capacityy must be inC. Equation (11) is exactly summing these
contributions. [ |
From Lemma 2, we know that there exists a gr&pghe G(n, k, d, «, 3) whose mincut is exactl{jg”:ig{”l’k}’1 min{(d—
)8, a}. This implies that if we want to ensure recoverability whaldowing a newcomer to connect tmy set of

d existing nodes, then the following is a necessary condition
min{d,k}—1
> min{(d—1i)B,a} > M. (14)
1=0
Furthermore, when this condition is satisfied, we know ampbrin G(n, k, d, «, 8) will have enough flow from
the source to each data collector. For this reason, we say
min{d,k}—1

Z min{(d — )3, a} (15)

=0

12

C

is thecapacityfor (n, k, d, «, 3) regenerating codes (where each newcomer can access amgrgrbét ofi nodes).
Note that ifd < &, requiring anyd storage nodes to have a flow 8ff will lead to the same condition (c.f. (14))
as requiring anyt storage nodes to have a flow 68fl. Hence in such a case, we might as well setsd. For this

reason, in the following we assunae> k without loss of generality.

4This, however, does not rule out the possibility that theauiris larger if a newcomer can choose thexisting nodes to connect to. We
leave this as a future work.
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We are interested in characterizing the achievable trésibetween the storage and the repair bandwidtts.
To derive the optimal tradeoffs, we can fix the repair bandiwhd solve for the minimum such that (14) is
satisfied. Recall that = dg the total repair bandwidth, and the parametersk, d, o, v) can be used to characterize
the system. We are interested in finding the whole region a$ilde points(«,~) and then select the one that

minimizes storage or repair bandwidthy. Consider fixing bothy andd (to some integer value) and minimize

a*(d,y) Smin o (16)
k-1 ;
i : i - = > .
subject to ; min { (1 d) 5, a} > M

Now observe that the dependencedmust be monotone:
a*(d+1,7) < a*(d,7). €y

This is because*(d, ) is always a feasible solution for the optimization tar(d+ 1,~). Hence a larged always
implies a better storage—repair bandwidth tradeoff.
The optimization (16) can be explicitly solved: We call tr@uion, the threshold function*(d, ), which for

a fixedd, is piecewise linear:

M € [£(0), +00)
a*(d,y) = o ! Y
{ M=gliy [f(@), f(i = 1)),
where

. 2Md
TO= G =i Dir 2k@—k 1) -

LA (2d =2k i+ 1)i
g(i) = 2d ) -

The last part of the proof involves showing that the thredtahction is the solution of this optimization. To

simplify notation, introduce

k—1—1
bié<1—T’>% fori=0,....k—1. (21)
Then the problem is to minimize subject to the constraint:
k—1
> min{b;,a} > B. (22)
=0
The left hand side of (22), as a function ef is a piecewise-linear function af:
ko, a € [0, bo]
bo + (]f — 1)047 o€ (bo, bl]
Cla)=9 : : : (23)

bo+...+bpo+a, «€ (bk_g,bk_l]

bo+ ...+ bx_1, aE(bk_l,OO)
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Note from this expression th&t(«) is strictly increasing from 0 to its maximum valég+. . .+b,_1 asa increases

from 0 to b;_;. To find the minimum such thatC(a) > B, we simply leta* = C™"(B) if B <by+...+bp_1:

B e [O,kbo]

—bo B € (kbg,bo + (k — 1)b
or={ A ! (24)

k—2 k—2 k—1
B—=>li—obj, Be€ (ijo bj + br—2, >-i g bJ':|

Fori=1,...,k — 1, thei-th condition in the above expression is:

v B Yo bs
k—1i ’
i—1 i
for B € (Zb] + (k — i)bi_l,ij + (k — 1 — ].)bl] s
Jj=0 Jj=0

Note from the definition ofb;} (21) that

k—l—j)
y

:7i<1_k;1>+ugén]

L
o>
.
Il
=
7N\
=
|
IS8

B Z_2d —2k+i+1
=7 — og
= 9(3),
and
> b+ (k—i—1)b;
j=0
. 2d -2k 41+ 2 . k—1—1
—’y(z~|—1)T~l—(k—z—l)7 (1—T>
B 2ik — i% — i + 2k + 2kd — 2k>
= 2% )
_B
oM
where f(i) andg(:) are defined in (2)(3). Hence we have:
B —g(i) ( B WB]
ax = . for B e - , o
k—i fi=1)" f(i)
The expression of*(d,~y) then follows. [ |
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